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Abstract: The electrons transfer (ET) from an atom or a molecule, donor (D), to another, acceptor (A) is the basis of 

many fundamental chemical and physical processes. The ET mechanism is controlled by spatial arrangements of donor 

and acceptors: it’s the particular spatial arrangement and thus the particular distance and the orientation between the elec-

tron donors and acceptors that controls the efficiency in charge separation processes in nature. Here, we stress the impor-

tance of this concept reviewing how spatial distribution of atomic and molecular self-assembly can determine the quality 

and physical features of ET process from biology to material science. In this context, we propose novel lab-on-chip tech-

niques to be used to control spatial distribution of molecules at nanoscale. Synchrotron source brightness jointly to focus-

ing optics fabrication allows one nowadays to monitor and visualize structures with sub-micrometric spatial resolution. 

This can give us a new powerful tool to set up sophisticated X-ray imaging techniques as well as spectroscopic elemental 

and chemical mapping to investigate the structure-function relationship controlling the spatial arrangement of the mole-

cules at nanoscale. Finally, we report intriguing recent case studies on the possibility to manipulate and control this spatial 

distribution and material functionality at nanoscale by using X ray illumination. 

Keywords: Charge separation, electron transfer, lab on chip, photo-induced phase transition, synchrotron radiation, X-ray mi-

cro-diffraction. 

INTRODUCTION 

In living systems the directional transport of electrons 

(ET) controlled by spatial arrangements of donors (D) and 

acceptors (A) is a fundamental process for charge separation 

to convert light energy into chemical energy. In photosynthe-

sis light illumination produces electron-hole excitations fol-

lowed by charge separation controlled by the reaction centers 

in the various membrane complexes. One of the most in-

triguing problems of electron transport in biological systems 

is how an electron can be moved over long distances about 

10-30 nm with little loss of energy [1]. Early theories, in the 

beginning of the 1940’s, were based on electronics jumps 

from enzyme to enzyme immobilized in membranes by using 

energy bands analogous to those found in semiconductors 

[2]. Later, various dynamical models proposed protein con-

formational changes pushing electrons [3, 4]. The view 

changed dramatically in the 1960’s when De Vault and 

Chance demonstrated that a cytochrome in the photosyn-

thetic bacterium Chromatium vinosum was oxidized with a 

half-time of 2 μs [5]. Furthermore, the same author found 

that the time constant for this electron transfer reached a lim-

iting value of 2 ms at 100 K, remaining constant down to 
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4.5 K [6]. At the beginning of the 1990’s, the ET was found 

to occur in few ps in purple bacteria at room temperature 

[7, 8].  

Between various mechanisms proposed for ET explana-

tion, the treatment of the reactant-product transition prob-

ability produces the semiclassical Marcus equation [9] for 

the rate, kET, of non-adiabatic electron transfer (ET) between 

a donor (D) and acceptor (A) held at fixed distance: 

kET =
4 3

h2 KBT
HAD exp

G +

4 KBT
 (1) 

Here G is the change in free energy associated with the 

ET reaction;  is reorganization arising from i) the nuclear 

deformation of the reactants, ii) the intra-molecular reorgani-

zation energy, and iii) the solvent reorientation. HAD repre-

sents the electronic coupling between donor and acceptor 

states defined as 

HAD=< A|H| D> (2) 

where A and D are the acceptor and donor electronic 

wavefunctions, respectively, and H is the Born-Oppenheimer 

(rigid nuclei) electronic Hamiltonian for the system. The 

factors  and G depends on the properties of the solvent, 

the donor, the acceptor and their mutual distance. The reac-

tion is called adiabatic or non-adiabatic depending on the 

HAD value. 
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Classical ET theory is well suited to treat ET reactions in 

the adiabatic limit where HAD<KT. As the electronic cou-

pling increases, one falls in the so-called ‘strong coupling’ 

limit and a quantum-coherent treatment enters the scene [10]. 

In the strong coupling limit the donor and acceptor electronic 

states mix to produce new delocalized states (Frenkel exci-

tons). These states, are slightly perturbed by the interactions 

with the solvent and the energy is quantum shared among 

several A-D instantaneously, giving rise to the so-called 

wave-like transfer. From the experimental point of view, the 

development of two-dimensional electronic spectroscopy 

(2DES), has been able to experimentally detect signatures of 

coherence dynamics. Indeed, to date, 2DES, and in particular 

two dimensional photon echo (2DPE), is the most common 

spectroscopy used to explore quantum effects [11, 12].  

Although experimental evidence is accumulating, the 

quantum effects in ET occurring in biological systems remain 

highly debated. In any case, despite the various theories and 

the experimental findings, the possibility to mimic the natural 

process is strongly correlated to spatial chromophores ar-

rangement [13-15]: it’s the unique spatial arrangement of the 

structural constraints controlling both the distance and the 

orientation between the electron donors and acceptors that 

produces the high efficiency light-charge separation processes. 

This issue inspired scientists to engineer artificial systems that 

reproduce the conversion of light into electrical energy.  

FROM PROTEINS TO D-B-A ARTIFICIAL COM-

POUNDS 

ET in living systems involves proteins such as flavodox-

ins, blue-copper proteins, iron-sulfur proteins, and cyto-

chromes. [16, 17] In these proteins ideal metal ions sites 

would provide very fast electron transfer if the metal coordi-

nation spheres could come into contact with each other (i.e., 

as in small-molecule outer sphere reactions, in which the 

unimolecular rate constant for electron transfer would be 

close to 10
10 

s
-1

 if there were no thermodynamic barriers). 

Lewis et al. showed that ET in DNA depends on both the 

distance between the electron donor and acceptor and the 

nature of the molecular structure separating the donor and 

acceptor [18]. They showed that the distance decay of ET in 

DNA rates varied with the energetics of the donor and accep-

tor relative to the bridging molecules, B. 

Inspired by these complex protein systems, many studies 

have been devoted to designing simpler artificial light har-

vesting architectures called D–B–A compounds, based on an 

electron-donating moiety D and an electron-accepting moi-

ety A covalently bound to the ends of some rigid bridging 

structure B. Several donor–bridge–acceptor (D–B–A) sys-

tems have been synthetized; interesting bridges are repre-

sented, for examples, by self-assembled monolayers of -

sulfur functionalized cyclohexylidenes [19]. 

Using the semi-classical theory (eq. 1), it is possible to 

define an effective tunneling barriers Eeff in terms of the 

exponential decay constant, , describing the variation of 

rates with distance  

Eeff = 0.952 eV Å
2 2

 (3) 

This tunneling depends on the properties of the D–B–A 

compound and the surrounding solvent. In many cases, espe-

cially in the non-adiabatic limit where the mutual distance is 

large, the electronic properties of the bridge are a major fac-

tor in determining the rate of ET [20]. Thus, it is just the 

incorporation of bridge chromophores (B) with its spatial 

arrangement between A and D that improves energy transfer 

towards acceptors (A), recalling the doping mechanism for 

semiconductors. 

D-A CRYSTALLINE LAYERS WITH ATOMIC-
DEFECTS 

Simpler systems for photoinduced ET are constituted by 

crystals, where ET is promoted by outer sphere (OS) elec-

trons jumping to the conduction band generated by a peri-

odic arrangement of electron density. Crystals can be viewed 

as the simplest systems in nature due to their long range or-

dered periodic structure. Indeed, their homogeneous struc-

ture has been taken as a basic frame for the solid-state theo-

ries development. Anyway, in the last decades homogeneity 

and long range order has been broken also in these idealized 

simple systems. It was due to the presence of atomic defects. 

Wagner and Schottky [21] showed through statistical ther-

modynamic treatments of mixed phases that crystal struc-

tures are not ideal. Some lattice sites can be empty (vacant) 

and extra atoms may occupy the interstitial space between 

the atoms on the lattice sites. The empty lattice sites are 

termed vacancies and the extra atoms interstitial atoms. Fol-

lowing Wagner and Schottky, all crystalline solids contain 

vacancies and extra atoms and exhibit deviations from the 

ideal structure at any temperature.  

These defects are at the base of many of their properties, 

including their ET process. It’s well known how in semicon-

ductor devices field defects push more electrons in the con-

duction bands. Beyond semiconductors, defects play a fun-

damental role in superconductivity [22-24], where their con-

centration is able to switch a material from insulating to 

Fermi liquid metal. In Fig. (1) we draw a scheme for ET in 

cuprates, a well-known class of high Tc superconductors: 

stacks of atomic layers playing the role of Acceptors to stor-

age electrons and Donors to storage holes. Electron and 

holes defects can be introduced by doping or, as we will see 

ahead, by illuminating the sample. 

What appeared quite surprising in recent researches is 

that not only the defects content but also the 3D defects spa-

tial distribution significantly affects the transport properties 

[25-28]. Thus, spatial distribution of acceptor, donors and 

bridges can be considered a key point to be addressed in or-

der to get deeper insight on ET in nature, ranging from bio-

logical to material science field. 

CONTROLLING AND VISUALIZING SELF-
ASSEMBLY AT NANOSCALE 

Self-assembly provides a facile means for organizing 

molecules into supramolecular structures that can bridge 

length scales from macroscopic down to nanometers dimen-

sions. These structures can provide charge conduits that can 

efficiently drive electrons and holes between reaction cen-

ters. Small and wide angle X-ray scattering (SAXS/WAXS) 

from non-covalent aggregates using a synchrotron source is a 

powerful tool for the elucidation of their solution phase 

structures and formation kinetics [29-32]. New computa-

tional approaches allow SAXS/WAXS data to be interpreted
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Fig. (1). Architecture of a typical high temperature superconductor made of stacks of atomic layers playing the role of Acceptors to storage 

photo-induced electrons and Donors to storage photo-induced holes. 

 

in terms of coordinate models and molecular dynamics simu-

lations and can be used to refine the structures of self-

assembled systems [33-35]. However, self-assembly does 

not allow a full control of the molecular spatial arrangement; 

this constitutes a crucial point in structure-function relation-

ship since understanding interactions between A and D 

block-units, differently arranged in space, can be critically 

important [36-39].  

In this context it was proposed to use nanotechnology 

and sample manipulation by external stimuli to reach a better 

control of atomic and molecular spatial arrangement. In par-

ticular, the possibility offered by new nanotechnology to 

design devices able to control spatial arrangement and con-

centration of molecules could play a crucial role [40]; for 

example, the development of novel techniques based on 

droplets deposition on superhydrophobic surfaces (SHSs) 

can be used to study chemical reactions, interactions, 

aggregation/precipitation processes and phase transitions by 

in situ X-ray scattering, diffraction and spectroscopy [40, 

41]. Such studies took also advantage of drop evaporation 

allowing measurements in a dynamical concentration status. 

Very recently, an ad hoc designed superhydrophobic surface 

has been used to realize large ordered arrays of strictly 

oriented DNA filaments, as shown in (Fig. 2). This highly 

order and controlled configuration could contribute to boost 

the fundamental research on electron transfer in biological 

systems. 

 

Fig. (2). Schematic flow chart describing a novel method to realize highly ordered arrays of stretched and suspended DNA strands by using 

superhydrophobic surface. Panel a shows a typical superhydrophobic patterned surface fabricated by electron beam lithography on silicon 

substrate. The peculiar device morphology, made of high aspect ratio pillars, hinders the surface wettability forcing the water to assume very 

high contact angle (>150°). The operation principles of the above mentioned device is summarized in panel b-f. A few microliters water 

droplet containing DNA is deposited on the superhydrophobic surface (panel b), specifically designed to obtain a fine control of the droplet 

dewetting dynamics. To this purpose, silicon pillars entail tips (hundreds of nanometers in size) which, under evaporation conditions, favor 

the formation of water capillary between adjacent pillars. A schematic view of these nanostructures is shown in panel c, d and e. The water 

capillary evaporation pushes together the DNA strands (panel d) and allows the formation of stable DNA bundle precisely positioned on the 

tips side (panel a). The above described device structure allows to obtain highly ordered arrays of strictly oriented DNA bundles, as sche-

matically shown in panel f. Panel g shows a typical SEM image of a couple of ordered arrays of DNA filaments stretched and suspended 

above superhydrophobic silicon pillars. As can be clearly noticed, DNA bundles appears to be precisely positioned on the same pillar posi-

tion as a consequence of the above described mechanism. 
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Improvements in synchrotron source brightness and fo-

cusing optics fabrication, make X-ray imaging techniques at 

nanoscale actually available, resulting in high-impact appli-

cations in several fields ranging from material science to bio-

medicine. Thus, the application of spectroscopic elemental 

and chemical mapping, microdiffraction-based structural 

analysis, and coherent methods for nanomaterials imaging on 

the structures deposited on the described (SHSs) nanodevices 

could allow to investigate the structure-function relationship 

controlling the spatial arrangement of the molecules. In Fig. 

(3), we illustrate the case of nanodiffraction on heterogene-

ous crystals. The high brilliance of synchrotron radiation, in 

combination with active X-ray focusing optics, permits one 

to hit small sub-micrometric zones with high photon flux. In 

this way we can i) visualize weak, but important features in 

structural properties of a material, thanks to the high flux; ii) 
map these features with submicrometric spatial resolution 

thanks to the nano beams provided by the focusing optics. 

Fig. (3a) shows the scheme of a typical experimental setup 

permitting the detection of weak diffuse scattering as satel-

lite reflections surrounding strong Bragg peak. While Bragg 

peaks account for average long-range ordered crystalline 

structure, diffuse scattering gives information on local scale 

or short-range ordered structures. In the specific case, satel-

lites represent defects ordering in a La2CuO4+y crystal. In 

Fig. (3b) we show the mapping of the ordered defects do-

mains on the sample. Basic spatial statistics analysis (Fig. 3c, 

3d) show that the defects arrange themselves in a scale free 

network configuration. Even more remarkably, is the fact 

that different spatial arrangement of the same defects con-

tent, gives rise to different properties, such as different su-

perconducting critical temperatures [25]. 

PHOTO INDUCED CHARGE ORDERING: X-RAY 

DIFFRACTION PUMP AND PROBE  

As mentioned before, external stimuli such as thermal 

treatment, doping, B incorporation, photo-illumination can 

help in controlling structure and functionality of material. 

Let’s consider here defects self-assembly controlled and 

monitored under photo-illumination. Kawashima measured 

large persistent photoconductivity in oxygen-reduced 

YBCO/LCMO superlattices grown by pulsed laser deposi-

tion [42] while Peña et al. reported a large transient photo-

induced enhancement of the superconducting critical tem-

perature in epitaxial YBa2Cu3O6.7/La0.7Ca0.3MnO3 bilayers 

upon visible light illumination [43]. Recently, Fausti et al. 
used mid-infrared femtosecond pulses to transform the 

stripe-ordered compound, not superconducting La1.675Eu0.2 

Sr0.125CuO4, into a transient three-dimensional superconduc-

tor [44, 45].  

Besides optical wavelengths, also different energies (e.g., 

X-rays) produce intriguing morphological as well as func-

tional effects on materials. In this framework, a new pump 
and probe experimental approach, based on X-ray diffraction 

performed with synchrotron radiation has been recently pro-

posed. In this approach the X-ray photon beam works at the 

same time as pump and as probe on the portion of sample 

illuminated. Here we’ll show some significant results in 

La2CuO4+y in order to offer an intriguing aspect in field of 

photo induced charge separation. La2CuO4+y is a relatively 

simple high-Tc superconducting system, with the negatively 

charged CuO2 layers intercalated by rock salt La2O2 spacer 

layers. Above 370 K the doping oxygen interstitials, y, re-

leasing holes in the basal CuO2 planes, become disordered; if 

a sample is heated above this temperature and then quenched 

to low temperatures it has a poor superconducting order. 

However, by illuminating such a disordered sample with X-

rays at room temperature, it was observed nucleation and 

growth of ordered domains (see Fig. 4a), giving a recovery 

of a robust high-Tc state. It is now understood that it is a par-

ticularly ordered spatial distribution of oxygen interstitials 

that hosts the highest temperature superconductivity: more 

specifically, the optimal superconductivity occurs when de-

fective ordered domains percolates into a fractal network 

 

Fig. (3). (Panel a) Typical experimental setup for high spatial resolved porobes. Synchrotron X ray in focused on (sub)micrometric sample 

areas. A single collected frame, onto an area CCD detector, allows us to get information about average crystalline structure (Bragg peak) and 

about defects organization (diffuse scattering). High precision mechanical x-y-z stages allow the sample to move under the beam. (Panel b) 

Mapping of intensity measured from diffuse scattering due to satellite reflections associated to interstitial oxygen defects. The bar is 20 mi-

crons. Both the (c) spatial distribution and the (d) spatial correlation of satellite intensity, related to the density of ordered domains, follow a 

clear power-law behavior, indicating a scale-free, fractal structural organization of ordered interstitials oxygen. Details about spatial distribu-

tion and spatial correlation calculations can be found in ref. [25]. Is this particular defects topology that gives the optimum superconducting 

temperature. 
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[25, 26]. It is possible to construct such network using 

(sub)micro-beams as a pen, in order to design arbitrary pat-

terns of higher superconducting paths. 

SUMMARY 

Electron transfer mechanism is a long-standing puzzle 

tackled by a common effort from different research fields. 

Huge advances have been made from the first attempts in the 

explanation of the phenomenon, leading to new modern 

theories based on quantum coherence and advanced experi-

mental techniques based on ultra-fast spectroscopy. Al-

though the remarkable advances, people are not yet able to 

mimic natural ET processes, meaning that new paths could 

be followed. In this review, taking inspiration from the new 

results in “simpler” materials, we underline the importance 

of spatial distribution of A-B-D systems for the material 

functionality. The high performance of efficiency for photo-

synthetic networks found in nature is related to the spatial 

distribution of various chromophores transporting energy to 

reaction centers. Thus, the ability to study several spatial 

arrangements of the chromophores, could allow us to corre-

late structure to efficiency. For this aim we propose to use 

novel lab-on chip techniques for manipulating and control-

ling this spatial distribution, jointly to advanced structural 

probes based on bright sources and focusing optics for moni-

toring and visualization.  
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