A. Bianconi (ed.) Symmetry and Heterogeneity in High Temperature Superconductors, 213-216 NATO Science Series II Mathematics, Physics and Chemistry – Vol. 214 © 2006 Springer, Dordrecht, The Netherlands

V.2

OXIDE SUPERCONDUCTIVITY

John D. Dow

Department of Physics, Arizona State University, Tempe, Arizona 85287, U.S.A

- Abstract:The trio of ruthenate compounds, doped Sr_2YRuO_6 , $GdSr_2Cu_2RuO_8$, and Gd_2 .
 $_zCe_zSr_2Cu_2RuO_{10}$ all superconduct in their SrO layers, which is why they have
almost the same ≈ 49 K onset temperatures for superconductivity. The sister
compound Ba_2GdRuO_6 , whether doped or not, does not superconduct, because
the Gd breaks Cooper pairs. These fit in with the superconducting cuprates:
the superconducting layers are SrO or BaO, not CuO2.
- Key words: Theories and Models of the Superconducting State; Type II Superconductivity; High- T_c Compounds

1. RUTHENATES AND RUTHENO-CUPRATES

The ruthenates and rutheno-cuprates, including the superconductors (a) Cu-doped Sr₂YRuO₆, (b) GdSr₂Cu₂RuO₈, and (c) Gd_{2-z}Ce_zSr₂Cu₂RuO₁₀ and the non-superconductor Ba₂GdRuO₆ (whether Cu-doped or not) need to be explained by a successful theory of high-temperature superconductivity. All three of these superconducting compounds begin superconductivity, *e.g.*, of Sr₂YRu_{1-u}Cu_uO₆, does not become complete until T_c≈23 K, when Ru librations freeze out. Furthermore, whatever we propose for these ruthenates and rutheno-cuprates must also provide a suitable explanation of the cuprates and materials such as Gd_{2-z}Ce_zCuO₄ and YBa₂Cu₃O₇. The unified explanation which we propose is that the superconductivity is in the SrO or

the BaO layers (or in the vicinity of interstitial oxygen) of all high-temperature superconductors.

2. DOPED Sr_2YRuO_6 SUPERCONDUCTS

Sr₂YRuO₆ superconducts when it is doped with only 1% Cu on Ru sites [1]. The superconductivity sets in at \approx 49 K and becomes rather extensive at \approx 30 K (when a spin-glass state appears) but does not become complete until \approx 23 K when the Ru librations freeze out.

The interesting thing about the superconductivity is that all the sites are accounted for to better than 1%, and *the material contains no cuprate-planes* (at the >1% level). The material is layered (like most high-temperature superconductors) and so one must decide if the $(SrO)_2$ layers or the doped YRuO₄ layers actually carry the supercurrent. Because the Ru has a large magnetic moment, and the SrO has none, we select the SrO layer as the superconducting layer. The data for the material support this choice [2]. Obviously, a cuprate-plane model cannot explain these Cu-doped Sr_2YRuO_6 data, because there are no cuprate-planes in this material. The possibility that the superconductivity does not reside in the cuprate-planes of other high-temperature superconductors, but in the SrO, BaO, or interstitial-oxygen regions, must be considered very seriously.

3. DOPED Ba_2GdRuO_6 DOES NOT SUPERCONDUCT

Neither Cu-doped nor undoped Ba₂GdRuO₆ superconducts, although the material Ba₂GdRuO₆ is virtually the same as Sr_2YRuO_6 (and is in the same class as Sr_2YRuO_6) [3]. The main difference is that Y has L=0 and J=0, while Gd has L=0 and J=7/2. The lack of superconductivity in Ba₂GdRu_{1-u}Cu_uO₆ is due to Cooper pair-breaking in the BaO planes by J≠0 Gd.

4. $GdSr_2Cu2RuO_8 AND Gd_{2-z}CezSr_2Cu_2RuO_{10}$

The onset temperatures for superconductivity in the materials $GdSr_2Cu_2RuO_8$ and $Gd_{2-z}Ce_zSr_2Cu_2RuO_{10}$ are also near ≈ 49 K, and so it

appears that doped Sr₂YRuO₆, GdSr₂Cu₂RuO₈, and Gd_{2-z}Ce_zSr₂Cu₂RuO₁₀ are all members of the same class of superconducting materials, and that they all superconduct in their SrO layers [4].

This viewpoint is bolstered by the facts that both of the ruthenate materials $GdSr_2Cu_2RuO_8$ and $Gd_{2-z}Ce_zSr_2Cu_2RuO_{10}$ show magnetism (associated with their cuprate-planes) at low temperatures, which strongly indicates that their superconductivity is not in their cuprate-planes, but in their SrO layers [5].

5. $Gd_{2-z}Ce_zCuO_4$ DOES NOT SUPERCONDUCT

 $Gd_{2-z}Ce_zCuO_4$ does not superconduct, either because the size of Gd is too small or because Gd has J \neq 0. The possibility that the problem with the superconductivity is due to Gd being too small can be eliminated by considering $(Gd_{1-u}La_u)_{2-z}Ce_zCuO_4$ which has a bond length that is long enough to superconduct, but does not superconduct. Therefore $Gd_{2-z}Ce_zCuO_4$ does not superconduct because Gd has $J\neq$ 0 and is a pair-breaker [6,7] --- much like in Cu-doped Ba₂GdRuO₆.

6. GdBa₂Cu₃O₇ DOES SUPERCONDUCT

 $GdBa_2Cu_3O_7$ superconducts at around 90 K [8,9]. Since its CuO_2 planes are adjacent to its pair-breaking Gd ions, we can conclude that the superconductivity is not in its CuO_2 planes, but in other layers: the BaO layers are the only such layers that are generally available in other high-temperature superconducting compounds [10].

7. SUMMARY

The ruthenates and rutheno-cuprates are very similar to the cuprates: in both sets of materials the Gd compound does not superconduct, either in $Ba_2GdRu_{1-u}Cu_uO_6$ or in $Gd_{2-z}Ce_zCuO_4$. Also, once the superconductivity is located in the BaO or SrO planes (and not in the cuprate-planes) the superconductivity of $GdSr_2Cu_2RuO_8$ and $GdBa_2Cu_3O_7$ become easy to understand and consistent with the non-superconductivity of $Ba_2GdRu_{1-u}Cu_uO_6$ and $Gd_{2-z}Ce_2CuO_4$.

By placing the superconducting condensate in the SrO or BaO layers, and not in the cuprate-planes, we explain (i) why Ba_2GdRuO_6 does not superconduct, (ii) why $Gd_{2-z}Ce_zCuO_4$ does not superconduct, and (iii) why Sr_2YRuO_6 doped with Cu does superconduct - three facts that have been unexplained by cuprate-plane superconductivity.

REFERENCES

- S. M. Rao, J. K. Srivastava, H. Y. Tang, D. C. Ling, C. C. Chung, J. L. Yang, S. R. Sheen, and M. K. Wu, J. Crystl. Growth 235, 271 (2002).
- D. R. Harshman, W. J. Kossler, A. J. Greer, C. E. Stronach, D. R. Noakes, E. Koster, M. K. Wu, F. Z. Chien, H. A. Blackstead, D. B. Pulling, and J. D. Dow, Physica C 364-365, 392 (2001).
- H. A. Blackstead, J. D. Dow, D. R. Harshman, D. B. Pulling, M. K. Wu, D. Y. Chen, and F. Z. Chien, Solid State Commun. 118, 355 (2001).
- 4. H. A. Blackstead, J. D. Dow, D. R. Harshman, D. B. Pulling, Z. F. Ren, and D. Z. Wang, Physica C 364-365, 305 (2001).
- J. D. Dow, H. A. Blackstead, Z. F. Ren, and D. Z. Wang. "Magnetic resonance of Cu and of Gd in insulating GdSr₂Cu₂NbO₈ and in superconducting GdSr₂Cu₂RuO₈," Submitted.
- 6. H. A. Blackstead and J. D. Dow, Phys. Rev. B 55, 6605 (1997).
- 7. H. A. Blackstead and J. D. Dow, Phys. Lett. A 226, 97 (1997).
- M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu, Phys. Rev. Lett. 58, 908 (1987).
- Z. Fisk, J. D. Thompson, E. Zirngiebl, J. L. Smith, S.-W. Cheong, Solid State Commun. 62, 743 (1987).
- D. R. Harshman, W. J. Kossler, X. Wan, A. T. Fiory, A. J. Greer, D. R. Noakes, C. E. Stronach, E. Koster, and J. D. Dow, "Nodeless pairing state in single-crystal YBa₂Cu₃O₇", to be published.