SESSION 3

(September 26, 2000)

Lattice fluctuations and stripes - I

S3-I E. Kaldis New aspects of Ca doping in 123

S3-II

H. Oyanagi Local lattice distortions in $YBa_2Cu_3O_y$ single crystal: Phase separation and pseudogap opening

S3-III

S. J. L. Billinge Dynamic charge inhomogeinities in underdoped cuprates from the atomic pair distribution function

S3-IV

J. Tanaka

Quantum chemical studies on the doping mechanism in cuprate superconductors

S3-V

S. I. Schlachter

Pressure effect and specific heat of $RBa_2Cu_3O_x$ at distinct charge carrier concentrations: possible influence of stripes

New aspects of Ca doping in 123

E. Kaldis

Laboratorium für Festkörperphysik ETH, 8093 Zurich, Switzerland.

Recent investigations of Ca doped 123 give a quite different picture, contrasting the generally accepted properties:

1) Very accurate oxygen determinations (Ax = + 0.001) of fully oxidized samples show that the oxygen content does not decrease linearly but oscillates stepwise between x = 6.980 and 6.966. up to 17% Ca. The question arises if these oscillations are due to phase transitions.

2) EXAFS measurements of the same samples (Röhler et al. 1999) do not find changes in the pair distribution function of Ca-doped and O-doped 123 up to a radius of 5 A, opening the question if Ca is at all incorporated in the lattice. The decrease of T_c and the data of the average crystallographic structure (Böttger et al. 1996) show of course clearly that this is the case. To solve this discrepancy, Röhler proposed that Ca is dissolved in the 123 lattice as a monodisperse solution i.e. in the form of single Ca-123 unit cells surrounded by Y-123. This cloud of Y-123 cells surrounding completely each Ca-cell is probably shielding the holes introduced by Ca, so that they could remain localized. In this case the observed decrease of T_c would come not from increase of the mobile holes but on the contrary from their decrease, due to the decreasing Y-123 units with Ca doping. 3) NEXAFS investigations (Merz et al. 1998) show that Ca doping introduces holes only

in the planes, whereas O-doping both in the plains and chains (apical oxygen). The later seems necessary for changes of T_c . This supports the above idea that Ca-holes are localized and do not contribute to superconductivity.

Keywords: Ca-doping in 123, oxygen content of Ca-monodisperse solution in 123.

Emanuel Kaldis Lanzenstr. 16 CH-8913 Ottenbach (ZH) Switzerland phone: 0041 1 761 40 01or 0041 1 761 25 01 fax: 0041 1 761 70 01 e-mail: Kaldis@solid.phys.ethz.ch

Local lattice distortions in YBa2Cu3Oy single crystal: phase separation and pseudogap opening

H. Oyanagi

Electrotechnical Laboratory, 1-1-4 Umezono Tsukuba, Ibaraki 305, Japan.

In our previous work [1], using oriented YBa₂Cu₃O_y thin films grown on SrTiO₃ substrate, the in-plane lattice distortions around copper atoms in the CuO₂ plane has been probed by polaized X-ray absorption spectroscopy (XAS). We find that the LTT-like tilting of CuO₅ pyramids occurs below T*, spin- or charge-excitation gap opening temperature. The hole concentration dependence, although limited in Tc range (55-78K), suggested that the onset temperature of lattice distortion which indicates the coexistence of distorted and undistorted domains coincides or at least is lower than T*. The average radial distribution of oxygens around copper atoms in YBa₂Cu₃O_y varies in a similar manner with that of La_{1.85}Sr_{0.15}CuO₄ where a charge-lattice stripe is observed [2]. Because of insufficient data quality due to substrate scattering and limited film thickness (100nm), however, a clear relation between the local lattice distortion and pseudogap opening has not been confirmed.

In this paper, the results of polarized XAS for YBa₂Cu₃O_y single crystals [3] will be reported, for which the polarization vector is chosen to be parallel with the c-axis. We find that *the copper-oxygen correlations for optimaly doped samples* (Tc=90K) shows a strong distortion exactly at T^* (120K), consistent with the previous in-plane experiment but with much larger magnitude. Such a large variation of the oxygen radial distribution function is in agreement with a correlated tilting model [1] where CuO₅ pyramids belonging to separate CuO₂ planes of the unit cell, connected by a rigid O1-Cu1-O1 linkage, tilt with an anti-phase correlation. Results of detailed analysis of polarized XAS, in particular, the hole concentration dependence (Tc=50-90K) will be reported. The results demonstrate that local lattice distortion occurs at T*, indicating that the charge segregation and/or ordering (stripe) appears to be closely related to the change of the Fermi surface as discussed by Kamimura et al. [4].

This work has been conducted as a collaboration with T. Haage, J. Zegenhagen, K. Oka, A.M. Moe, T. Ito, S. Tajima and T. Masui, A. Bianconi and N. L. Saini.

<u>References</u>

- [1] H. Oyanagi et al, Sripes and Related Phenomena ed. by A. Bianconi and N. L. Saini Kluwer Academic/Plenum Publishers, p. 227.
- [2] A. Bianconi et al., Phys. Rev. Lett. **76** (1996) 3412.
- [3] T. Masui and S. Tajima, unpublished.
- [4] H. Kamimura et al., M²S-HTSC-VI (Houston, 21 Feb. 2000).

H. Oyanagi Electrotechnical Laboratory 1-1-4 Umezono, Tsukuba, Ibaraki 305-8568, Japan phone: +81-298-61-5394 fax: +81-298-61-5085 e-mail: oyanagi@etl.go.jp

Dynamic charge inhomogeneities in underdoped cuprates from the atomic pair distribution function

S. J. L. Billinge, E. Bozin and M. Gutmann

Center for Fundamental Materials Research and Department of Physics and Astronomy, Michigan State University, East Lansing, USA.

The possible importance of stripes of charge and spin to the high temperature superconductivity phenomenon is clearly of great current interest. However, when the stripes are not long range ordered they become hard to detect since there is no superlattice in diffraction experiments: they are dynamic and only short-range ordered. It is exactly in this dynamic regime where superconductivity occurs. The charge stripes couple to the lattice producing a modulated structural distortion and therefore a superlattice. When they are short-range ordered, the local distortion must survive even though the superlattice does not. We show that in underdoped but superconducting $La_{2-x}A_xCuO_4$ (A=Sr,Ba,Nd), charge inhomogeneities are evident in the *local atomic structure*, studied using the atomic pair distribution function (PDF) analysis of neutron powder diffraction, consistent with the presence of fluctuating stripes. These disappear in the overdoped regime. The charge inhomogeneities appear with decreasing temperature in the temperature range 60-150 K depending on the sample composition. In Nd codoped samples they appear at 60 K close to the long-range charge ordering temperature. We will discuss evidence for local charge inhomogeneities in a number of different systems.

Keywords: Pair distribution function, neutron diffraction, local structure, charge stripes, high temperature superconductivity.

Simon J. L. Billinge Dept. Physics and Astronomy Michigan State University East Lansing, MI 48824-1116, USA phone: +1-517-353-8697 fax: +1-517-353-4500 e-mail: billinge@pa.msu.edu

Quantum chemical studies on the doping mechanism in cuprate superconductors

J. Tanaka

Faculty of Science, Kanagawa University, Hiratsuka, Japan.

Cuprate super-conductors are hole doped by replacement of cations with less charge ions or by introducing vacancies, or by putting excess oxygen atoms. We have simulated the doping process by a quantum chemical calculation on model clusters by changing the charges on the cluster or by removing the counter ions. A detailed analysis on the electronic structure revealed that unpaired electrons, which may give metallic state, are produced on the O pi and the ($Cud_{x^2-y^2}$ - O sigma) orbitals at doped site. This result is in conformity with a one-dimensional band structure of under doped cuprates recently found by photo-emission spectroscopy. Nature of magnetic excitation will be discussed based on this calculation.

<u>References</u> J. Tanaka and C. Tanaka, J. Phys. Chem. Solid, 59, 1861 (1998).

Jiro Tanaka Faculty of Science Kanagawa University Hiratsuka, 259-1293, Japan phone (home): +81 463 79 0577 fax: +81 463 76 0076 e-mail: tanaka@info.kanagawa-u.ac.jp

Pressure effect and specific heat of RBa₂Cu₃O_x at distinct charge carrier concentrations: possible influence of stripes

S. I. Schlachter¹, U. Tutsch¹, W. H. Fietz¹, K.-P. Weiss¹, H. Leibrock¹, K. Grube¹, R. Hauff¹, Th. Wolf¹, B. Obst¹, P. Schweiss² and H. Wühl^{1,3}.

Forschungszentrum Karlsruhe, ¹ITP and ²IFP, 76021 Karlsruhe, Germany. ³Universität Karlsruhe, IEKP, 76128 Karlsruhe, Germany.

In $YBa_2Cu_3O_x$, distinct features are found in the pressure dependence of the transition temperature, dT_c/dP , and in the jump of the specific heat, $\Delta C/T_c$, at x_s and x_0 : dT_c/dP peaks at x_s and is zero at x_q , whereas $\Delta C/T_c$ shows a maximum at x_q and becomes small below x_s . Substituting Nd for Y and doping with Ca leads to a shift of both x_s and x_o to larger and smaller oxygen contents, respectively, since content and order of oxygen in these compounds are quite different. Using the hole concentration $n_{\rm h}$ in the CuO₂ planes at x_s and x_o , which can be calculated from the parabolic $T_c(n_h)$ -behavior, the features coalesce at $\hat{n}_h(x_s) \approx 0.11$ and $n_h(x_0) \approx 0.18$, irrespective of substitution and doping. Hence, this behavior seems to reflect an intrinsic property of the CuO₂ planes. A charge carrier content of $n_{\rm h} \approx 0.18$ is usually attributed to the appearance of the pseudogap and $n_{\rm h} \approx 0.11$ close to 1/8 may express a localization of charge carriers as predicted for stripe correlations. In order to clarify whether the features at $n_h(x_s) \approx 0.11$ and $n_h(x_0) \approx 0.18$ are connected to stripe formation and the occurrence of the pseudogap, respectively, we additionally investigated the influence of Zn doping on dT/dP and found a completely different behavior of $dT_{l}/dP(n_{h})$.

Keywords: specific heat, pressure effect, charge-carrier concentration, doping.

Sonja I. Schlachter Forschungszentrum Karlsruhe Institut für Technische Physik P.O. Box 3640 76021 Karlsruhe, Germany phone: +49 7247 82-3554 fax: +49 7247 82-2849 e-mail: Sonja.Schlachter@itp.fzk.de